
C

The Ultimate AI Testing Playbook
From machine learning to agentic AI:
Smarter testing for better results

eBook

https://www.keysight.com/

Overview
The pressure to release updates faster to keep users happy is greater
today than it’s ever been. DevOps and continuous testing provide part
of the remedy to keep up, but unless testing teams harness the latest
AI-driven capabilities, they risk falling behind those that do.

Today, AI in testing is evolving beyond simple automation. Generative
AI (Gen AI) and Agentic AI are the next advancements, allowing for
self-adapting test execution and automated test case generation.
Keysight’s Eggplant Test has pioneered AI in software testing since
2018, and with elements of these technologies, it continues to push
the boundaries of intelligent automation.

The Ultimate AI Testing Playbook | 2

Modern software development demands that organizations
maximize release speed without compromising quality.

However, applications have grown in complexity and rely on multiple
integrations and diverse systems, placing significant pressure
on testing teams. Testing in isolation is often ineffective, and
organizations must contend with fragmented tools, each requiring
specific technical expertise.

As continuous testing and DevOps becomes mainstream, many
struggle to harness their full potential. For instance, Forrester’s
Developer Survey in 2024 states that only 23.6% of functional tests,
20.8% of non-functional integrations tests, and 20.5% of end-to-end
tests are automated.

By integrating artificial intelligence (AI) into the automated testing
toolkit, organizations can unlock unprecedented opportunities. AI-driven
testing not only overcomes the limitations of traditional methods but
also aligns with DevOps practices, improving key performance metrics
such as deployment frequency, lead time, and change failure rates.

In this playbook, we will explore the inherent challenges of traditional
automated testing, examine the limitations of current continuous testing
models, and introduce best practice options for integrating AI into your
testing strategy. The goal is to empower testing teams with the insights
and tools they need to balance speed with quality in today’s complex
software environment.

Introduction

The Ultimate AI Testing Playbook | 3

Continuous testing is embedded within modern CI / CD pipelines,
providing immediate feedback to development and QA teams.
This approach allows bugs to be spotted earlier in the process,
making them quicker and easier to fix–an essential requirement for
businesses prioritizing rapid release cycles.

As the name suggests, continuous testing runs non-stop throughout
the development process, so relying on human intervention isn’t
practical. As a result, elite software teams use automation to execute
repetitive and time-consuming test scenarios without manual
interaction.

However, automated testing is not a silver bullet. Three key
challenges with automated testing, especially in a continuous testing
environment, relate to the continued need for human intervention.

The Challenges of Traditional Automated Testing
The hidden cost of automated test
maintenance

Automated tests can be brittle, requiring significant maintenance. In
some cases, the effort to maintain an automated test exceeds the time
it took to develop the function it is testing. This creates a situation
where automated testing, intended to accelerate development,
becomes a bottleneck.

One common cause of excessive maintenance is changes in the
Document Object Model (DOM), mainly when object IDs, class names,
or element structures are modified. Many automated tests use static
locators—such as hard-coded IDs, XPaths, or CSS selectors—to interact
with UI elements like buttons, forms, or links. However, when these
identifiers change due to UI updates, tests break because they can
no longer locate the intended elements. It’s often unclear whether a
test failure is due to an actual defect or simply a changed ID, forcing
testers to update scripts manually, inspect DOM changes, and amend
frameworks to restore stability.

In practice, this means that human intervention is required in every
single test cycle to address broken locators, rerun failed tests, and
manually execute cases awaiting automation updates. As a result,
automated testing is often only partially automated, with ongoing
maintenance costs that can negate intended efficiency gains.

The Ultimate AI Testing Playbook | 4

Testing in isolation and tool integration

Software rarely operates in isolation—most applications rely on multiple
integrations, making end-to-end testing complex, especially during
regression testing after updates. Organizations often use a mix of
specialized tools for user interface testing, API validation, database
checks, and code analysis. While each tool serves a specific purpose,
this fragmented approach leads to siloed data, inconsistent test scripts,
and misaligned environment configurations.

Coordinating these tools introduces challenges in maintaining test
coverage, synchronizing updates, and consolidating reports across
different platforms. Teams struggle to analyze results efficiently without
a unified testing solution, increasing the time required to diagnose
failures and maintain quality assurance.

As a result, testers frequently resort to manual workarounds—such
as realigning test scripts, manually configuring environments,
and consolidating reports—to bridge gaps between tools. These
interventions not only slow down the testing process but also undermine
the benefits of automation, leading to inefficiencies, higher costs, and
an increased risk of human error.

The Conflict Between Intuition and
Risk-Based Strategies

An automated testing suite comprises two key subsets: regression tests
that run with every release to ensure fixed bugs remain absent and new
functionality tests that verify recently added features work as intended.
Both subsets are critical: regression tests ensure stability, while new tests
drive innovation.

Problems arise when testing time is compressed—common in agile
cycles and market-driven schedules. With shortened windows, managers
face a dilemma: delay the release to run all tests or rely on ‘gut feel’ to
decide which tests to execute. This intuition-based approach can result in
inconsistent coverage and missed edge cases while delays risk revenue
loss and competitive setbacks. Studies show that incomplete regression
testing leads to significant post-release defects, underscoring the risks of
rushing.

Some organizations adopt risk-based testing strategies to mitigate these
issues, but even these require time to implement. Fortunately, emerging
AI-driven solutions promise to optimize test prioritization and selection.
By identifying the most critical tests for each release cycle, AI can reduce
manual intervention and balance thorough testing with timely delivery.
We’ll explore how AI addresses these challenges in the next section.

The Ultimate AI Testing Playbook | 5

The Evolution of AI in Software Testing

Agentic AI has the capability to reason against system behavior, such
as Chain of Thought. It can dynamically adjust test execution based on
application changes, new feature additions, and detected anomalies,
ensuring comprehensive test coverage.

AI Testing Evolution

Machine Learning (ML)

Used for pattern recognition, defect detection, and historical test
optimization. By analyzing past test results and system behavior, ML AI
can identify high-risk areas and automate defect prediction, enhancing
test efficiency.execution based on application changes, new feature
additions, and detected anomalies, ensuring comprehensive test
coverage.

Generative AI (Gen AI)

Automates test case framework creation by understanding software
requirements and generating test scenarios autonomously. Generative
AI can extract information from user stories, code repositories, and
historical defects to create optimized, risk-based test cases, reducing
manual effort and improving accuracy.

Agentic AI

The latest evolution, where AI can autonomously decide, execute,
and adapt tests in real time, minimizing maintenance and human
intervention.

AI in software testing has advanced through several stages, each adding a layer of intelligence to address increasingly complex testing challenges:

The Ultimate AI Testing Playbook | 6

How AI-Augmented Testing Impacts
Continuous Testing
Test managers are increasingly using AI, machine learning, and
deep learning to keep up with the demand and diversity of testing
and overcome the limitations of automated testing in a continuous
testing environment. Furthermore, AI models are continuously
evolving, using vast datasets to improve predictive capabilities and
test case prioritization.

AI works by consuming data, running that data through specific
algorithms, and coming up with an optimized set of test cases to
execute for any situation. It makes decisions based on those inputs
much faster and more accurately than any human can. Crucially,
AI doesn’t need human interaction to run and can keep working as
long as test environments are operational. This opens up exciting
possibilities for speeding up automated testing.

It’s perhaps worth noting at this stage that we are not in the realms
of science fiction where AI does not need humans and can make
any decision based on any inputs. Today’s AI still needs to be human
guided. This is because it understands algorithms and data, but it
does not understand human knowledge, context, or emotions. It’s
perhaps better therefore to think of today’s Artificial Intelligence as
being Augmented Intelligence. It supercharges human efficiency
while at the same time being controlled and directed by the human.

However, advancements in Generative and Agentic AI are beginning to
reshape the way we test. By enabling the generation of test scenarios and
scripts from natural language inputs, it looks to bridge the gap between
human requirements and machine execution.

The continuum of AI testing and the
products that deliver on it

AI can be used to a greater or lesser extent in the continuous testing
environment. For the testing manager, it’s a balance between how much
automation AI executes autonomously and how much control it has in
selecting tests. However, the fact that human input is still required at
some level means the testing manager needs to decide how much AI
they should implement for the testing to meet release speed and release
quality goals.

A number of testing tools have been developed to help testing managers
harness what AI has to offer. Broadly speaking, they divide into four
categories (see diagram on the next page) but only the fourth category
goes far enough to minimize the risks and maximize the opportunities
AI presents. It means organizations need to take care when selecting
vendors of AI-powered testing solutions.

The Ultimate AI Testing Playbook | 7

Category 1

Select or identify tests to execute

Little to no data preparation

Little to no test execution capability

Less manual tester input needed

Extensive automation of test needed

High script maintenance costs

Extensive reporting capabilities

•

•

•

•

•

•

•

Category 3

Identify weak areas to test

Do not select test cases

Do not execute automated tests

High manual testing input needed

Extensive automation of tests needed

High script maintenance costs

•

•

•

•

•

•

Category 4

Identify weak areas to focus on

Few defined tests

Can complete entire automated test
lifecycle from generation to execution

Low automated test creation
and maintenance cost

Optimized cross-platform testing

Extensive reporting capabilities
automatically

•

•

•

•

•

•

Category 2

Select or identify tests to execute

Can complete entire automated test
lifecycle from generation to execution

Low automated test creation
and maintenance cost

Extensive reporting capabilities

•

•

•

•

More test selection control

Less test selection control

M
ore autom

ation execution capability
Le

ss
 a

ut
om

at
io

n
ex

ec
ut

io
n

ca
pa

bi
lit

y

The Ultimate AI Testing Playbook | 8

Eggplant’s AI testing harnesses
automation intelligence

Eggplant’s AI-driven test engine is the best in market for Automation
Intelligence. It operates using an ensemble of several algorithms
continually fighting for priority and harnesses automation best practices
to give testing teams the solution they need.

A democratized testing platform

Eggplant uses a Digital Twin interface. It is a collection of states, actions,
and transitions that capture how users use the application under test.
This way of working means having domain expertise is more important
than having automation expertise. This democratized approach
to testing means manual testers and domain experts do not need
automation expertise to be able to harness what AI has to offer.

The Ultimate AI Testing Playbook | 9

AI in test case selection

In these tools, AI looks at the existing repository of manual and
automated test cases and determines which ones to include for a given
release. This use of AI makes the test manager more efficient but still
requires a high level of human input. Why? Because you have to define
and maintain your full set of manual test cases. In addition, Generative
AI is beginning to enable testing tools to generate test case frameworks
from requirements documentation and natural language, offering more
improvements to traditional test case methods.

AI in test case execution and error
handling

In these tools, AI takes a reckoning of the system-under-test and
associated test data and based on that, determines which automated
scripts to execute. Any automated scripts that fail due to changes in the
application under test or within the automated script will be updated
and repaired by the AI. This is an exciting advance, but it is still only as
good as the data it gets (garbage in, garbage out, as the saying goes),
so there is always the risk the fix that has been implemented isn’t the
right one. Modern AI / ML techniques are being used to improve error
prediction, while generative AI could be used to autonomously generate
robust error handling routines in the future.

AI in test case selection and execution

These tools combine the first two approaches. Test cases are selected
and executed by the AI, replacing the work of the test manager and the
test engineer. The need for human input is lessened – but the risk of low
quality data or incorrect fixes is amplified. Not having clean data or poor-
quality automated tests is just going to replicate the same problems
with automation on a much larger, much faster scale. Some ML models
are being integrated to continuously learn from past test runs and
results. Emerging generative AI approaches are enabling test scenario
generation that adapts to changing software environments.

The Ultimate AI Testing Playbook | 10

AI in automation intelligence

The fourth type of tool is best described as Automation Intelligence.
It takes inputs from several algorithms and based on these criteria,
chooses which area of the application under test needs to be tested. In
an automation intelligence function, the AI looks at several components
such as past defect history, application changes, or coverage history to
determine what needs testing. The AI then builds the test case, executes
the test case, and reports on it.

There are three big advantages of automation intelligence. The first is
that it does not rely on clean data.

Consequently, it does not develop poor-quality automated tests that
replicate at scale the same problems with automated testing. And finally,
its tests are high quality and robust and can be executed without human
intervention, allowing teams to fully embrace continuous testing and
DevOps.

Looking ahead, Agentic AI may transform Automation Intelligence
by autonomously managing the Quality Engineering Lifecycle—from
design to analysis—in real time, paving the way for self-optimizing test
environments.

The Ultimate AI Testing Playbook | 11

Keysight Eggplant’s AI-powered test engine is the best in market for
Automation Intelligence. It operates using an ensemble of several
algorithms continually fighting for priority and harnesses automation
best practices to give testing teams the solution they need.

Eggplant already integrates elements of AI, Gen AI, and Agentic AI
into single platform. It optimizes test coverage, automates interactions
across digital environments, and executes tests just as a human would,
all while remaining offline and compliant with AI governance laws in the
UK, EU, and US. This is why Keysight Eggplant is the only AI-powered
testing solution that prioritizes security, transparency, and governance.
Our on-premises approach ensures that all sensitive data remains
secure, meeting even the most stringent compliance requirements.

A democratized testing platform

Eggplant uses a Digital Twin interface. It is a collection of states, actions,
and transitions that capture how users use the application under test.
This way of working means having domain expertise is more important
than having automation expertise. This democratized approach
to testing means manual testers and domain experts do not need
automation expertise to be able to harness what AI has to offer.

Keysight Eggplant’s AI Testing Harnesses
Automation Intelligence

The Ultimate AI Testing Playbook | 12

How Eggplant Works

Ensemble of Algorithms
Drive intelligent automated
creation of user journeys
for testing

Digital Twin model
All the possible paths a
user can take

User journey
One explicit path
through the model

Positive
business outcome

Regression packs

AI Bug hunting

Coverage analysis

Real user journey

Change and defect
monitoring

Interactive model
building

Model generation
from existing assets
eg. Gherkin

Model generation
from real customer
behavior

Intelligent application
‘scraping’

•

•

•

•

The Ultimate AI Testing Playbook | 13

The Eggplant Digital Twin works by using snippets of code associated
with the Action or State. These are intelligently stitched together by
the AI engine to generate and execute the automated tests.

The snippets of code can be automated scripts or created through
Eggplant’s natural Sense Talk language, which again democratizes
testing. When run, Eggplant AI chooses what it is going to test, builds
the automated tests from the code snippets and executes them.

Breaking down larger automated scripts into snippets like this offers
three key advantages.

The first is easier test case maintenance. One small script change
automatically updates thousands of automated tests, so fewer tests
need to be conducted manually while waiting for the automated
versions to be updated.

The second is faster test case creation. The AI engine, based on decision-
making algorithms, stitches these snippets together to create more
significant, more diverse automated tests. This opens up the possibility
of running more tests than ever before, even in a limited timeframe.

The third is greater flexibility. The bigger an individual automated
script gets, the narrower in scope it gets. Using snippets exponentially
increases how that particular bit of code is used in other automated tests.
Again, this opens up many more possibilities for tests that can be run.

A Best Practice Way of Working

The Ultimate AI Testing Playbook | 14

CASE STUDY

NEC Personal Computers
The mission of the Software Integration Department at NEC Personal
Computers is to deliver products to the company’s customers
without any OS problems. Led by Ichiro Mori, PM Group Manager,
the team analyzes any defects found by the development or test
departments and reproduces and fixes these issues prior to shipping.

Mori states, “The problems include fatal errors that have an
occurrence rate of less than 0.1 percent. Therefore, it’s necessary
to repeat the same operation more than 1,000 times to reproduce
a rare and fatal problem, resulting in an investigation of the cause
taking a significant amount of employee hours.”

NEC Personal Computers was able to automate some of this testing
via its proprietary testing tool, but the technology lacked the ability
to handle the graphical user interface (GUI) and use keyboard
inputs. Mori elaborates, “For example, if any user input like signing
in after a restart causes an error, the tool itself cannot reproduce it,
resulting in the need for manual intervention and many employee
hours of reproduction tests.”

Mori knew there was a better approach that could automate this
critical user experience testing while also maximizing human
testers’ time. After evaluating multiple test automation vendors,
Eggplant was selected.

NEC Personal Computers was able to quickly begin realizing returns
on its Eggplant investment. For example, the company compared the
reproduction test of a rare OS error before and after automation with
impressive results.

Mori explains, “Before automation, 1,000 trials required 47 employee
hours, while this reduced to 21 hours of the testing team’s time after
automation. A shipping decision in an OS error investigation required
12,000 trials, which means that 553 employee hours for the manual
reproduction test can reduce to just 32—resulting in a reduction rate of
one-seventeenth.” This reduction in manpower is equivalent to a one-
year Eggplant license and maintenance fee. As Mori puts it, “This means
that our Eggplant investment is covered through a single reproduction
test of only one OS error.”

Time needed to conduct 1,000 trials

Before AI testing:

47 employee hours
After AI testing:

21 employee hours

The Ultimate AI Testing Playbook | 15

DevOps at scale and continuous testing are fast becoming the only
way to test if organizations are to keep up with the pace of change
and the frequency of releases users now expect.

AI testing is about more than just following trends—it’s about making
strategic, future-ready decisions that merge innovation with robust
security, scalability, and compliance. AI provides the means to
realize all the benefits of continuous testing and deliver at the speed
required.

Since 2017, Keysight Eggplant has been a leader in AI-driven testing,
developing tools and solutions long before many competitors
entered the market. As AI technology evolves, we continue to
innovate, ensuring our platform remains at the forefront of secure,
offline AI testing.

If you’re looking to enhance your software testing approach and need
an AI-powered platform that delivers on security, compliance, and
flexibility, it’s time to explore what Keysight Eggplant has to offer.

Contact us today for a demo or 14-day free trial.

Conclusion

The Ultimate AI Testing Playbook | 16

https://www.keysight.com/gb/en/contact/eggplant/demo.html
https://www.keysight.com/gb/en/contact/eggplant/trial.html

This information is subject to change without notice. © Keysight Technologies, 2021 – 2025, Published in USA, March 18, 2025, 7121-1201.EN

Keysight enables innovators to push the boundaries of engineering by quickly solving design, emulation, and
test challenges to create the best product experiences. Start your innovation journey at www.keysight.com.

http://www.keysight.com
https://www.keysight.com/

